Inhibitors of Leucine-rich Repeat Kinase 2 (LRRK2): Progress & Promise for the Treatment of Parkinson's Disease

Hien Tran Zhao, PhD.
Ionis Pharmaceuticals
Parkinson’s disease (PD)

- Hallmarks of PD include Lewy bodies (LB) and Lewy neurites (LN) composed of alpha-synuclein (α-syn) and progressive loss of dopaminergic (DA) neurons.
- Aggregation of α-syn into filamentous inclusions is a key step in the pathogenesis of Parkinson’s disease.

Spillantini et al. Nature 1997; 388:28
Lippincott et al. Neurology 1999;52:893
Baba et al. AJP 1998; 152:879
LRRK2 plays a pathogenic role in familial PD

- LRRK2 mutations are the most common genetic cause of PD (Berg et al. 2005, Healy et al. 2008)
- Pathogenic mutations in the GTPase, COR, and kinase domains of LRRK2 lead to dominantly inherited late-onset PD (Paisan-Ruiz et al. 2004, Zimbrick et al. 2004)
- G2019S mutation, which increases kinase activity, is the most common mutation
LRRK2 likely plays a key role in sporadic PD

- LRRK2-mediated PD has similar clinical features to idiopathic PD, including α-syn pathology and nigral degeneration.
- Increased LRRK2 protein in brain regions with abundant LB pathology (Cho et al. 2013, Guerreiro et al. 2013).
- LRRK2 genetic ablation protects and overexpression exacerbates α-syn accumulation and downstream neuropathology (Lin et al., 2009, Daher et al. 2012).
- Genetic ablation of LRRK2 or treatment with potent LRRK2 kinase inhibitor protected against DA cell loss caused by viral-mediated overexpression of α-syn (Daher et al. 2014, 2016), or α-syn fibrils (Volpicelli-Daley et al. 2016).

Daher et al. 2014
Volpicelli-Daley et al. 2016
Antisense Technology Uniquely Addresses Challenging Neurological Diseases

- **Broad Distribution**
 e.g. spinal cord, cortical regions and deep brain structures

- **Exquisite Specificity**
 for targeting protein isoforms and genetic variants

- **Currently Undruggable Targets**
 such as toxic and nuclear retained RNAs

- **Multiple Mechanisms**
 e.g. decrease and increase production and splicing modulation
Multiple antisense mechanisms can be employed to modulate target RNA

Bennett et al 2016
Design and benefits of 2nd generation ASOs

- **‘Gapmer’ design** (to activate RNase H)
 - Phosphorothioate backbone
 - DNA in middle
 - Sugar 2’-O-methoxyethyl (MOE) modification at ends
 - 20 bases for high specificity and affinity

- **Benefits of ASOs**
 - Diffusible
 - Dose dependent
 - Stable
 - Reversible
Local CNS delivery of 2nd generation ASOs

- Intrathecal injection in humans, non-human primates, and rats
- Intracerebral ventricular (ICV) injection in mice

Benefits of local delivery:
- Low doses provide broad target suppression throughout the CNS
- Limited exposure to systemic organs
ASOs distribute to many different brain regions in non-human primates following IT injection.

Kordasiewicz et al 2012
ASOs are taken up by neurons and glia following ICV injection in mice
ASOs to LRRK2 as a potential therapy for PD

- ASOs targeting LRRK2 RNA will lower production of total LRRK2 and may be a potential therapy
Conclusions

• ASOs behave in a dose-dependent manner and exhibit long lasting target reduction in the CNS without affecting systemic organs

• Preventive ASO-mediated suppression of endogenous LRRK2 reduces formation of pathological α-syn inclusions and protects mice against α-syn-induced wirehang deficit and DA cell loss in the PFF inoculation mouse model

• Thus, ASO targeting LRRK2 may be of potential therapeutic use for PD
Acknowledgements

- Ionis Pharmaceuticals
 - Karli Ikeda-Lee
 - Eric Swayze
 - Holly Kordasiewicz
 - Frank Bennett

- Biogen
 - Andreas Weihofen

- UAB
 - Laura Volpicelli-Daley
 - Andrew B West
 - Neena John

Knowledge that will change your world
Extra slides
Substantial Progress in Ionis’ Neurological Disease Pipeline
Addressing a Broad Spectrum of Severe Neurological Diseases

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Partner</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Commercialized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinraza™</td>
<td>Spinal Muscular Atrophy</td>
<td>Biogen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-TTR<sub>Rx</sub></td>
<td>TTR Amyloidosis</td>
<td>GSK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-HTT<sub>Rx</sub></td>
<td>Huntington’s Disease</td>
<td>Roche</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-SOD1<sub>Rx</sub></td>
<td>Amyotrophic Lateral Sclerosis</td>
<td>Biogen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-BIIB4<sub>Rx</sub></td>
<td>Neurological Disease</td>
<td>Biogen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-BIIB5<sub>Rx</sub></td>
<td>Neurological Disease</td>
<td>Biogen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IONIS-BIIB6<sub>Rx</sub></td>
<td>Neurological Disease</td>
<td>Biogen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>